

Material Composition of Bucket Foundation Transition Pieces for Offshore Wind Turbines

<u>Anastasia Nezhentseva</u>, Lars Andersen, Lars Bo Ibsen & Eigil V. Sørensen[†]

[†] Department of Civil Engineering, Aalborg University, Aalborg, Denmark

Outline of presentation

- Motivation for the work
- Structure and loads
- Computational model
- □ Analysis and results
- Conclusions

Dansk Vindselskab for Vindenergis årlige konference = 25-26 August 2010 = A. Nezhentseva

Motivation for the work

Types of foundations for offshore wind turbines:

- a) Gravitational footing;
- b) Monopile;
- c) Suction bucket with traditional transition piece;
- d) Suction bucket with shell transition piece

AALBORG UNIVERSITY

Dansk Selskab for Vindenergi

Motivation for the work

Strengths of suction bucket vs. monopile:

- ✓ Fair simplicity of installation
- $\checkmark\,$ Possibility of decommissioning
- ✓ Stiffer structures (required for deeper water depths)
- $\checkmark\,$ No need of scour protection
- Weaknesses:
- ✓ Complicated structure to manufacture
- ✓ Requires extensive welding work
- ✓ Fatigue at the welded joints due to cycling wind / wave loads
- $\checkmark\,$ Can only be installed in residual soil

Structure and loads

Suggested cross-sectional profiles for the transition piece shell:

a) CRC (Compact Reinforced Composite) with traditional reinforcement: b) CRC-steel composite.

a)

One layer of reinforcement is replaced with a thin steel sheet (~5–10 mm) glued to CRC

 \rightarrow good material properties in tension, compression and bending.

- Moulding concrete on a steel plate sprinkled with bauxite on a damp twocomponent epoxy adhesive provides good attachment.
- ✓ Limited application of CRC until now:
 - reconstruction of steel bridges,
 - joining the tower and foundation of offshore wind-turbine structures.

Structure and Loads

	Conventional concrete	High Quality Concrete				
		CRC matrix		CDC with	High- quality	
		0–2 vol. % fibres	4–12 vol. % fibres	rebar	steel	
Compressive strength [MPa]	80	120-170	160–400	160–400	E00 600	
Tensile strength [MPa]	5	6-15	10–30	100–300	500~600	
Density [kg/m ³]	2500	2500– 2800	2600-3200	3000- 4000	7800	
Modulus of elasticity [GPa]	50	60–100	60–100	60–110	210	
Failure energy [N/m]	150	150– 1500	5000- 40000	2·10 ⁵ − 4·10 ⁶	2·10⁵	
Frost Resistance	Moderate	Frost-pro				
Corrosion Resistance	Moderate	Safe, eve	Poor			

Source: Bache H.H. "Concrete Engineering - New Concrete New Technologies", Aalborg Portland, 1992.

CRC vs. conventional concrete

- ✓ 2-5 times higher compressive strength and durability
- ✓ 20-60 times higher tensile strength and increased tensile ductility (fibre dependent)
 - ✓ Strong CRC matrix allows to utilize of 5–10 times more reinforcement → much stronger structures
 - ✓ 3-10 times thinner cover layer (5–15 mm against 50 mm for conventional concrete)
 - Low chloride permeability due to high density with "clogging" effect over time
 - ✓ High price of the material
 - ✓ No internationally accepted design recommendations exist

Structure and Loads

- ✓ 5 MW wind turbine installed at 35 m water depth
- ✓ Total mass of the structure is applied as a vertical concentrated force V = 7.5 MN
- ✓ Extreme wind load H = 2 MN is applied as an equivalent quasi-static force to the top of the transition piece with a corresponding moment M=182 MN⋅m
- ✓ Gravity (self weight) is induced on structures below the water surface
- ✓ Wave load is simplified based on potential theory as inertia (added mass) and drag (fluid resistance) parts.

AALBORG UNIVERSITY

Dansk Selskab for Vindenergi

Computational model

- ✓ Half of the structure and soil is modelled
- ✓ Simple model for the soil (elastic)
- ✓ Material models:
 - Steel rebar von Mises yield criterion with linear hardening;
 - CRC Damaged Plasticity Model;
- ✓ Radius of the discretized area is 35 m , i.e. ~ 4 times the radius of a bucket
- ✓ Bottom boundary is 21 m below the suction bucket foundation base
- ✓ Element types:
 - Soil solids with quadratic interpolation and reduced integration
 - Structure 8-noded shell elements with reduced integration
- ✓ Tie constraints at the interfaces between bucket and soil → sliding along the interfaces is disregarded
- The loads from the wind turbine are applied on a rigid lid placed on top of the transition piece

Analysis and results

□ Analysis

✓ Ultimate limit state (material failure)✓ Prebuckling (linear perturbation)

Results

a) CRC with two layers of reinforcement;

 b) CRC-steel composite with a single layer of reinforcement;

c) Reference case (steel sheet).

Imperfection [m]

Prebuckling mode	First	Second	Third	Weight,
Construction material	eigenvalue	eigenvalue	eigenvalue	tons
a) CRC	6.33	7.41	7.98	456
b) CRC-steel sheet	2.83	3.05	3.67	343
c) Steel sheet	1.11	1.23	1.45	327

Dansk Vindselskab for Vindenergis årlige konference = 25-26 August 2010 = A. Nezhentseva

- ✓ Reference case (steel) showed excessive use of steel in low tensile stress regions.
- \checkmark Welding two sheets with various thicknesses, can minimize use of steel \rightarrow complicated and costly.
- \checkmark CRC structure of 120 mm thick increased the weight of the substructure by 40 %.
- ✓ CRC-steel composite material increased the weight of the structure by 5 %.
- ✓ Amount of ductile steel in the form of reinforcement and steel sheets, carrying majority of the tensile stresses, is likely to dictate a transition-piece design.
- ✓ Steel substructure is the most sensitive to geometrical and loading imperfections, while the transition piece made of CRC was the least imperfection sensitive.

Generation Future work:

- ✓ Further investigation and experimental testing of structure made of prefabricated composite CRCsteel shell elements.;
- ✓ Optimization of the shape to reduce amount of the materials used.
- ✓ Performing cyclic tests to check fatigue behaviour by experimental testing as well as simulation.

Thank you for your attention

Anastasia Nezhentseva: an@civil.aau.dk

Dansk Vindselskab for Vindenergis årlige konference = 25-26 August 2010 = A. Nezhentseva