

Numerical Simulation of Ice-Induced Vibrations in Offshore Structures

by Mauri Määttänen

HELSINKI UNIVERSITY OF TECHNOLOGY

Contents

- Introduction
- Ice Mechanics
- Dynamic Ice-Structure Interaction
- Self-Excited Model
- Application Examples

DALIAN

- Wind Turbine Foundations
- Ice-induced vibration mitigation
- Conclusion

Ice mechanics background

- Moving ice
- Observed ice-induced vibrations
- Ice properties
- Energy interchange
- Numerical model requirements
- Different model approaches

Ice properties

- Homologous temperature >0.95
- Salinity and temperature effects
- Elastic, creep, damage, cracking
- Nonhomogeneous or orthotropic
- Grain size, aspect ratio and size effects

Ice-Structure Dynamic Interaction

 $\begin{bmatrix} \mathbf{k} \end{bmatrix} \begin{pmatrix} \mathbf{k} \\ \mathbf{k} \end{pmatrix} + \begin{bmatrix} \mathbf{d} \end{bmatrix} \begin{pmatrix} \mathbf{k} \\ \mathbf{k} \end{pmatrix} + \begin{bmatrix} \mathbf{m} \end{bmatrix} \begin{pmatrix} \mathbf{k} \\ \mathbf{k} \end{pmatrix} = \begin{pmatrix} \mathbf{k} \\ \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{k} \\ \mathbf{k} \end{pmatrix} = \begin{pmatrix} \mathbf{k} \\ \mathbf{k} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{k} \\ \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{k} \\ \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{k} \\ \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{k} \\ \mathbf{k} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{k} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{k} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{k} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{k} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{k} \end{pmatrix} \end{pmatrix} \begin{pmatrix} \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{k} \end{pmatrix} \begin{pmatrix} \mathbf{k}$

DALIAN

Ice-induced vibration

- Dynamic ice-structure interaction
- Response of structure significant
- Ice strength vs. loading rate
- Frequency lock-in
- Synchronisation
- In-field experience

Model Requirements

- Simulate real structural response
- Saw tooth response, low ice velocity.
- Random response, high ice velocity.
- Frequency lock-in and resonance.
- Synchronization, wide or multi-legged.

Different model approaches

- Ice having a characteristic failure frequency
- Characteristic ice failure length
- Matlock's model
- Self-excited model (displ. & velocity control)
- Extrusion of crushed ice
- Contact line (hot-spot) models
- Ice damage evolution models (μ -mechanics)

Self-Excited Model

- Ice strength vs. stress rate.
- Response displacement and velocity coupling.
- Self-excited autonomous model
- Independent multi-point excitation.
- Any structure, principal modes.
- Numerical time integration.
- Steady state limit cycles.

Crushing strength vs. strain rate

DALIAN

Crushing strength vs. strain rate

Crushing strength vs. stress rate

Equations of motion

$$F_{i} = A_{i} \cdot \boldsymbol{s}_{c}(\boldsymbol{s}) \cdot \sqrt{\frac{A_{0}}{A_{i}}}$$
$$\boldsymbol{s} = (v - \boldsymbol{u}) \frac{\boldsymbol{s}\boldsymbol{s}_{0}}{\boldsymbol{p}D}$$

$[k]{u} + [d]{u} + [m]{u} = \{F(v, \{u\}, \{u\})\}$

Complex roots, $\lambda = a \pm i\omega$, of a mode

50 •a<0 0 Stable mode -50 -100 1 2 3 100 •a>0 50 0 Unstable mode -50 -100 0 2 3 4

•real part ~ sensitivity to ice-induced vibrations

MPM 2002-09-23

DALIAN

15

First application 1997

DALIAN

Kemi-2 Lighthouse 1981

DALIAN

Kemi-2 Lighthouse 1981

Mode	Freq	ζ%
	Hz	
1	0.32	0.33
		stable
2	0.93	0.36
		stable
3	7.6	530
		unstable
4	12.3	0,0
		stable

DALIAN

Kemi-2 Measurement data

Kemi-2 Measurement data

DALIAN

Kemi-2 Measurement data

DALIAN

Application structures

- Three-legged jacket platform
 - Relatively flexible structure
 - Narrow legs under ice action
 - Sensitive to ice-induced vibrations
- Caisson retained island
 - Relatively stiff structure
 - Wide area under ice action
 - Generally unsensitive to ice induced vibrations

THREE LEGGED PLATFORM NATURAL MODES

Application results, cont

Application results: Three legged structure

- Predicts correctly velocity dependence:
 - Saw tooth, random and frequency lock-in.
- Very sensitive to ice-induced vibrations:
 - Limit cycles develop fast.
- Frequency lock-in with different modes.
- Synchronization at different legs prevails
- Vibrations cannot be suppressed by increasing structural damping.
- Results agree well with lighthouse measurements

CAISSON RETAINED ISLAND NATURAL MODES

Application results:

Application results, cont.

Caisson retained •island

DALIAN

Application results: Caisson retained island

- Predicts correctly velocity dependence:
- Low sensitivity to ice-induced vibrations:
 - Limit cycles develop slowly.
- Frequency lock-in mainly with the first mode.
- Synchronization at whole contact width prevails
- Vibrations could be easily suppressed by increasing structural damping.
- Results in agreement with full-scale observations

CRI vibration amplitude vs. ice relative velocity

DALIAN

EC Offshore wind energy goal

- 2010 » 5 GW (about 1000...2000 units)
- 2020 » 50 GW (about 10000 units)
- Present projects:
 - Middelgrunden 2000/2001 20*2 MW 40 MW
 - Horns Rev 2002 80*2 MW 160 MW
 - Umeå 2002 60 MW
 - Rødsand 2002
 - Germany 2002-20??

150 MW +

12 GW

Foundation moment, 5 MW 10 m water depth

DALIAN

Wind turbine examples

- Tower 67 m, pile foundation
 - Relatively flexible structure
 - Sensitive to ice-induced vibrations
 - Acceptable vibration level
- Tower 67 m, caisson foundation
 - Relatively stiff structure
 - Generally unsensitive to ice induced vibrations
 - Low vibration level

Wind turbine pile and caisson foundations

PILE FOUNDATION NATURAL MODES

Assumed saw-tooth ice load function:
Resonance with lowest modes
Simple
Conservative

Nacelle displacement vs. time

DALIAN

Nacelle acceleration vs. time

39

Foundation comparison

	Caisson	Pile
1. mode	0.41 Hz	0.38 Hz
2. mode	0.90 Hz	2.50 Hz
3. mode	3.06 Hz	6.4 Hz
4. mode	8.34 Hz	11.3 Hz
Max. displ. p.p.	37 mm	324 mm
Max acceleration	16 gal	111 gal
Static deflection	0.78 m	0.96 m

Nacelle acceleration △F=1.2 MN

41

Top and w.l. displacement Δ F=1.2 MN

42

Ice induced vibration mitigation

	Tran-	Conti-	Multi-	Techn.	Cost
	sient	nuous	modes	feasible	
Add stiffness	+	+/-	+/-	+	-
Increase mass	+	+/-	+/-	+	+/-
Add damping	≈+	+	+	-	-
Isolation	+	+	+	+	+
Mass damper	_	+	-	+	+
TLD	-	+	-	+	+
Active damping	+	+	+	-	-
Conical W.L.	+	+	+	+	_
Ice breaker	+	+	+	+	-

DALIAN

Conclusions

HELSINKI UNIVERSITY OF TECHNOLOGY

- Versatile numerical ice-structure dynamic interaction simulation model presented.
- Ice strength vs. stress rate approach predicts similar response as measured in full-scale.
- Frequency lock-in and synchronization phenomena captured.
- Gives means to design offshore structures insensitive to ice-induced vibration